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Abstract. For nearly two decades, the C++ programming language has been the dominant
programming language for experimental HEP. The publication of ISO/IEC 14882:2011, the
current version of the international standard for the C++ programming language, makes available
a variety of language and library facilities for improving the robustness, expressiveness, and
computational efficiency of C++ code. However, much of the C++ written by the experimental
HEP community does not take advantage of the features of the language to obtain these benefits,
either due to lack of familiarity with these features or concern that these features must somehow
be computationally inefficient.

In this paper, we address some of the features of modern C++, and show how they can
be used to make programs that are both robust and computationally efficient. We compare
and contrast simple yet realistic examples of some common implementation patterns in C,
currently-typical C++, and modern C++, and show (when necessary, down to the level of
generated assembly language code) the quality of the executable code produced by recent C++
compilers, with the aim of allowing the HEP community to make informed decisions on the costs
and benefits of the use of modern C++.

1. Introduction
For nearly two decades, the C++ programming language has been the dominant programming
language for experimental HEP. The publication of the current international standard for the
C++ programming language [1] has enhanced existing features of the language, and provided
several new features, all of which can aid in the writing of code that is more robust, and more
easily maintainable, than previously possible. In the field of HEP, however, there is widespread
(although not universal) reluctance to make use of some of the features of modern (and even
1998-era) C++. We have found that, in discussions with physicist-programmers, that the most
common reason raised against the use of language features that are unfamiliar is the fear of
computational inefficiency, when compared to implementing the same or equivalent functionality
through use of only the lowest-level features of the language.

In this paper, we address a few of the features for which such fears are groundless, and
prove our assertions by comparing either the result of timing alternative implementations, or by
comparing the result of disassembling the result of compiling the different implementations. Our
goal is to provide the readers with sufficient evidence to overcome their reluctance to use the
language and library features we discuss, so that they may benefit from the greater expressiveness
of modern C++.



Since our goal is to illustrate how the use of several features of C++ allow the writing of code
that is clearer and more maintainable than low-level code, without cost of runtime inefficiency,
we have concentrated on very simple uses of these features. This allows us to concentrate on
the comparison in question. For example, we compare Fortran-style loop indexing to iterator
loops by in the context of a performing a simple sum, so that the comparison of timing results
is as sensitive as possible to differences in the loop construction, rather than being dominated
by the work done by the loop. This also helps keep the assembly language generated by the
compiler as simple as possible, which makes it easier to understand. Sometimes this has the
unfortunate side-effect of minimizing the difference in clarity between the low-level coding style
and the higher-level facility.

In all the examples, we use the GCC compiler, version 4.8.1, and the compiler options we
typically use for production code: g++ -O3 -std=c++11 -fno-omit-frame-pointer -g.

2. Loop styles
Modern C++ provides several forms of iteration: Fortran-style index based loops, iterator-based
loops, range-based loops, and in some cases generic algorithms that encapsulate the loop. We
have found that many people new to C++ avoid the use of all the latter in favor of the first,
sometimes for fear of “inefficiency”. Listing 1 shows an index-based for loop, in a style that is
common among beginning C++ programmers.

Listing 1. A non-idiomatic index-based for loop.

double sum_0(std::vector <double > const& x) {

double sum = 0.0;

for (int i = 0; i < x.size (); i++) { sum = sum + x[i]; }

return sum;

}

sum_0 contains most of the non-idiomatic usages we have seen in loops: repeated calls to
vector::size, postfix increment of the loop counter i, use of separate addition and assignment
rather than the += operator, and use of int as the type of the loop counter. Of all these, it is
the use of int as the type for the loop counter that is most often defended as important for
efficiency. The idiomatic form for an index-based loop in modern C++ is shown in listing 2:

Listing 2. An idiomatic index-based for loop.

double sum_1(std::vector <double > const& x) {

double sum = 0.0;

for (auto i = 0UL , sz = x.size (); i < sz; ++i) { sum += x[i]; }

return sum;

}

There are several reasons for the idioms in this version of the code. We call vector::size once.
While this is not critical when the collection we’re iterating over is a std::vector, because the
compiler is able to determine the size of the vector does not change and thus can perform the
loop-invariant code motion to remove the repeated calls, for other types of collection the analysis
is less simple. We use prefix increment, rather than postfix increment; while this is not critical
for a loop counter that is an int, for other looping constructs the coast of the postfix increment
can be larger than the prefix increment.

The main difference between listing 1 and 2 is the use of int rather than unsigned long

as the type for the loop counter. The C++ standard specifies the argument of the indexing
operator for std::vector to be of type std::vector::size_type, which in the implementation
used for compiling these examples, is unsigned long. Use of the correct type avoids problems
with such things as template type deduction, when use of the wrong type can cause compilation



failures. However, some avoid the use of the correct type because of the belief that use of int is
more efficient. We timed 1000 repetitions of calls to the sum functions, using vectors of length
10 million, on an Intel I7 @2.7 GHz processor. The mean and standard deviation for the running
time of sum_0 was 22.98 ± 0.80 million ticks, while that for sum_1 was 22.80 ± 0.57 million ticks

To see why this is the case, we compare the assembly language generated by the compiler,
obtained by dis-assembling the object module produced by the compiler. This allows us to be
sure we are observing any effects of optimization steps performed on the assembly language itself.
The total size of the code for sum_0 is 69 bytes; for sum_1 it is 63 bytes. The sections of code at
entry and exit of the functions are the same except for reordering and register renaming. The
difference is in the loop constructions themselves, shown in listings 3 and 4.

Listing 3. Assembler for sum_0.

0030 movq %rdx , %rcx

0033 movq %rax , %rdx

0036 leaq 0x1(%rdx), %rax

003a addsd (%rsi ,%rcx ,8), %xmm0

003f cmpq %rdi , %rax

0042 jne 0x30

Listing 4. Assembler for sum_1.

0030 addsd (%rcx ,%rax ,8), %xmm0

0035 addq $0x1 , %rax

0039 cmpq %rdx , %rax

003c jne 0x30

The loop in sum_0 is slightly larger than that from sum_1. For these two loops, the compiler
has chosen to use a different instruction to increment the int than that chosen to increment the
unsigned long. As our timing measurements show, there is no significant difference in speed
between the two solutions. There is no sign that use of int make the code faster, and thus there
is neither a speed nor a code size reason to use the non-idiomatic code.

The iterator-based looping construct provides additional advantages: they provide a looping
interface that can be used for all types of collections. Combined with the std::begin and
std::end functions, and with appropriate use of auto for compile-time type deduction, the
resulting code is both clear and flexible, as shown in listing 5.

Listing 5. Iterator-based looping.

double sum_2(std::vector <double > const& x) {

double sum = 0.0;

for (auto i = begin(x), e = end(x); i!=e; ++i) { sum += *i; }

return sum;

}

Some avoid the use of iterators due to concern about the speed of the resulting code. The time
taken by this looping construct is 22.82± 0.79 million ticks; this does not differ significantly from
the other loops. Listing 6 shows the portion of the assembly language generated for the loop in
sum_2. It is slightly smaller (because of decreased setup code) than the code for the idiomatic
index-based loop, and only 2/3 the size of the code for sum_0. The loop itself differs from the
index-based loop only in the indexing scheme used in the floating-point addition instruction
addsd. Concern against the iterator-based loop based on performance is unwarranted.

Listing 6. Assembler for sum_2.

0020 addsd (%rax), %xmm0

0024 addq $0x8 , %rax

0028 cmpq %rax , %rdx

002b jne 0x20

002d popq %rbp

002e ret

Listing 7. Range-for looping.

double sum_3(std::vector <double >

const& x) {

double sum = 0.0;

for (auto val : x) sum += val;

return sum;



Modern C++ provides an even more compact looping construction, the range for loop. This is
perhaps the most flexible of the looping constructs in the language, in that it can be used for any
sequence that is supported by std::begin and std::end. Listing 7 shows the implementation
of a loop using this construct. The assembly language generated for sum_3 is identical to that
produced for the iterator-based loop. This code is the most clear and flexible of all, and this
clarity and flexibility comes with no performance disadvantage at all.

Finally, the C++ Standard Library provides a function template, std::accumulate that does
the same work as our hand-written loops. The use of this function is shown in listing 8:

Listing 8. Use of the Standard Library algorithm.

double sum_4(std::vector <double > const& x)

{ return accumulate(begin(x), end(x), 0.0); }

Because it uses an algorithm expressly written for this task, this code is the most compact of
all; we would probably call it directly in the place where the sum is wanted, rather than writing
sum_4 at all. The assembly code generated by sum_4 differs from that generated by iterator-based
loop only by the renaming of some registers and the ordering of some of the setup instructions.
When a Standard Library algorithm exists that does the required work, it typically produces
both the clearest and most maintainable code, and also code as efficient as that which might be
hand-written for the same purpose. There is no argument from code size or efficiency to scorn
the use of Standard Library algorithms.

3. Lambda expressions
A lambda expression is similar to a function without a name, which may declared at “function
scope”—within the body of another function. By allowing the placement of the body of a
function “in line”, rather than requiring the definition of a function outside of a local scope, they
make Standard Library-style generic algorithms easy to use. The use of generic algorithms helps
make code more uniform and thus easier to read, often makes code briefer and thus more clear.
Generic algorithms provide a single point of maintenance for an algorithm, and thus greater
chances that improvement in the implementation of an algorithm can improve the performance
of many bodies of code. Finally, they ease the introduction of parallel programming libraries,
such at Intel Threading Building Blocks[2], which provide parallel algorithms through this style
of interface. Many users of C++ are not yet familiar with lambda expressions, and some of those
who are familiar with them are hesitant to use them because of concern over the efficiency of the
generated code.

Listing 9 shows an example of the sort of loop that can be simplified by the use of one of the
Standard Library algorithms.

Listing 9. Hand-written loop to fill a histogram.

void fill_hist_1(std::vector <double > const& nums , TH1D& h) {

for (auto i=begin(nums), e=end(nums); i != e; ++i)

{ h.Fill(*i); }

}

Listing 10 shows the use of std::for_each to perform the same task, using a lambda expression
to produce the function to be called by the std::for_each algorithm, and in fill_hist_3 it
shows the use of a named function object created from a lambda expression. This last style is
especially useful for two reasons: the same object can be passed to more than one algorithm,
and the name of the created object, if well-chosen, documents the behavior of the function.



Listing 10. Using a generic algorithm to fill a histogram.

void fill_hist_2(std::vector <double > const& nums , TH1D& h) {

for_each(begin(nums), end(nums), [&h]( double x){ h.Fill(x); });

}

void fill_hist_3(std::vector <double > const& nums , TH1D& h) {

auto fillhist = [&h]( double x){ h.Fill(x); };

std:: for_each(nums.begin(), nums.end(), fillhist );

}

Listing 11 shows part of the assembly language produced by the compiler for fill_hist_2; to
save space, we show only the body of the loop where the TH1D::Fill function is called. We note
that the line labeled 0x0030 directly calls Fill; there is no overhead added by the use of the
lambda expression or the generic algorithm. The only difference between the assembly language
produced for fill_hist_1 and fill_hist_2 is the order of the arguments specified for one of
the instructions. fill_hist_3 generates assembly language identical to that of fill_hist_2;
this is no sign of the local variable fillhist. Thus the enhanced clarity of the code comes at no
runtime cost.

Listing 11. Part of the assembly language for fill_hist_2.

0020 movq (%r12), %rax

0024 movq %r12 , %rdi

0027 addq $0x8 , %rbx

002b movsd 0xfffffffffffffff8 (%rbx), %xmm0

0030 callq *0x2a8(%rax)

0036 cmpq %rbx , %r13

0039 jne 0x20

4. Bit-fields
One of the lowest-level computing tasks commonly needed in scientific programming is the
manipulation of bit-packed data. Such code can be written directly, using bit-wise operators to
shift and mask integral data to yield the correct behavior. But such code is less easy to get correct
than many expect; it is common to see manipulations that fail to handle all cases correctly, for
example by failing to assure that only those bits that should be modified are modified, and no
others. Careful use of macros can help, but maintenance of the macros can be needlessly difficult.
C++ provides bit-fields to aid in such coding. Compare the clarity and maintainability of the
code shown in listings 12 and 13, and their uses in listings 14 and 15.

Listing 12. Defining bit-packed data with macros.

typedef uint64_t BitWord;

#define MASK01 0x0000000000000001UL

#define MASK10 0x00000000000003ffUL

#define MASK24 0x0000000000ffffffUL

#define BW_APP(p,v,m,s) p = (p & ~(m << s)) | (v & m) << s

#define BW_SET_COUNT(p,v) BW_APP(p,v,MASK24 ,00)

#define BW_SET_READING(p,v) BW_APP(p,v,MASK10 ,49)

#define BW_SET_FLAG(p,v) BW_APP(p,v,MASK01 ,63)

#define BW_GET_READING(p) p >> 49 & MASK10

Listing 13. Defining bit-packed data with bit-fields.

struct BitField { uint64_t count : 24; uint64_t reading : 10;

uint64_t flag : 1;};



Listing 14. Using the bit-packing macros.

BitWord

set_with_macros(uint64_t reading ,

uint64_t count ,

uint64_t flag) {

BitWord b {0};

BW_SET_READING(b,reading );

BW_SET_COUNT(b,count);

BW_SET_FLAG(b,flag);

return b;

}

Listing 15. Use of bit-fields.

BitField

set_with_bits(uint64_t reading ,

uint64_t count ,

uint64_t flag) {

BitField a;

a.reading = reading;

a.count = count;

a.flag = flag;

return a;

}

The assembly language generated by set_with_macros and set_with_bits is shown in listings 16
and 17. These listings differ only in the order of the instructions; the size and the speed of the
generated code is the same. Again, the improved expressiveness and maintainability of the code
come at no cost in size or speed.

Listing 16. Assembler for set_with_macros

0000 movq %rsi , %rax

0003 shlq $0x3f , %rdx

0007 andl $0x3ff , %edi

000d andl $0xffffff , %eax

0012 pushq %rbp

0013 shlq $0x31 , %rdi

0017 orq %rdx , %rax

001a movq %rsp , %rbp

001d popq %rbp

001e orq %rdi , %rax

0021 ret

Listing 17. Assembler for set_with_bits.

0000 movq %rsi , %rax

0003 andl $0x3ff , %edi

0009 andl $0x1 , %edx

000c shlq $0x18 , %rdi

0010 andl $0xffffff , %eax

0015 pushq %rbp

0016 shlq $0x22 , %rdx

001a orq %rdi , %rax

001d movq %rsp , %rbp

0020 orq %rdx , %rax

0023 popq %rbp

5. Variadic templates
The variadic template, which allows one to write a single template that works with an arbitrary
number of template parameters of arbitrary type, may be the highest-level feature in the language.
A single variadic template can be used in place of a whole series of functions, classes, or templates.
A good demonstration of the value of variadic templates is in the definition of callback objects.
Our goal is to produce a set of callback object to allow code like that in listing 18:

Listing 18. Use of callback objects.

int f1(OneArgSignal s, int a) { return s.invoke(a); }

long f2(TwoArgSignal s, int a, long b) { return s.invoke(a, b); }

To write the OneArgSignal and TwoArgSignal types lasses directly, we would write two classes,
as shown in listing 19. We could instead write a template for each, which would provide the
ability to have different types as the argument(s) for each invoke function, as well as different
return types, but we would still need to write two non-variadic templates to handle the different
number of arguments. The single variadic template in listing 20 is capable of defining any number
of callback types, with arguments of arbitrary type and number. The usings introduce aliases
which provide convenient names for two of the types produced by this template.



Listing 19. Hand-written callback wrappers.

struct OneArgSignal {

typedef int (* func_t )(int);

func_t f; // Stored callback.

int invoke(int a) const

{ return f(a); }

};

struct TwoArgSignal {

typedef

int (* func_t )(int , long);

func_t f; // Stored callback.

int invoke(int a, long b) const

{ return f(a, b); }

};

Listing 20. Template callback wrapper.

template <class RT, class ... Args >

struct Signal {

typedef RT (* func_t) (Args ...);

func_t f; // Stored callback.

RT invoke(Args ... a) const {

using std:: forward;

return f(forward <Args >(a)...);

}

};

Listings 21 and 22 show the assembly language produced from the use of the callback functions.
The code generated from use of the variadic template is exactly the same as that produced for
the hand-written types. The variadic template solution is more flexible, more maintainable, and
has no size or speed penalty.

Listing 21. Assembler for f1.

0000 pushq %rbp

0001 movq %rdi , %rax

0004 movl %esi , %edi

0006 movq %rsp , %rbp

0009 popq %rbp

000a jmpq *%rax

000c nopl (%rax)

Listing 22. Assembler for f2.

0010 pushq %rbp

0011 movq %rdi , %rax

0014 movl %esi , %edi

0016 movq %rsp , %rbp

0019 movq %rdx , %rsi

001c callq *%rax

001e popq %rbp

6. Conclusion
One of the goals of the design of C++ was to provide a language with “no room below it”, that
is, to leave no reason to use a lower-level language instead. This goal influenced the design of
many of the “higher-level” features of the language, some of which we addressed in this paper.
Modern C++ compilers are sufficiently advanced to realize this goal in many cases.

Modern C++ has many features to allow more concise and expressive code that is easier to
maintain, when compared with C or with old-style C++. Some of these features take advantage
of the type system of C++, and especially the ability to specialize code using templates. Other
take advantage of new syntax introduced to the language, often interacting with features of
the library. Modern C++ is much more than an object-based language, and provides more
abstraction mechanisms than the class and the virtual function. Using language features as
they are intended to be used, especially the “high-level” features that are sometimes sources of
concern to those unfamiliar with them, can yield code that is both more clear and expressive,
and thus easier to maintain, than code written using only the low-level features of the language.
As we have shown, in many cases these high-level features introduce no runtime cost, and their
is no reason to avoid their use.

References
[1] ISO 2011 Information Technology–Programming Languages–C++ ISO/IEC 14882:2011
[2] Reinders J 2007 Intel threading building blocks 1st ed (Sebastopol, CA, USA: O’Reilly & Associates, Inc.) ISBN

9780596514808


